3 research outputs found

    A review of compensation topologies and control techniques of bidirectional wireless power transfer systems for electric vehicle applications

    Get PDF
    Owing to the constantly rising energy demand, Internal Combustion Engine (ICE)-equipped vehicles are being replaced by Electric Vehicles (EVs). The other advantage of using EVs is that the batteries can be utilised as an energy storage device to increase the penetration of renewable energy sources. Integrating EVs with the grid is one of the recent advancements in EVs using Vehicle-to-Grid (V2G) technology. A bidirectional technique enables power transfer between the grid and the EV batteries. Moreover, the Bidirectional Wireless Power Transfer (BWPT) method can support consumers in automating the power transfer process without human intervention. However, an effective BWPT requires a proper vehicle and grid coordination with reasonable control and compensation networks. Various compensation techniques have been proposed in the literature, both on the transmitter and receiver sides. Selecting suitable compensation techniques is a critical task affecting the various design parameters. In this study, the basic compensation topologies of the Series-Series (SS), Series-Parallel (SP), Parallel-Parallel (PP), Parallel-Series (SP), and hybrid compensation topology design requirements are investigated. In addition, the typical control techniques for bidirectional converters, such as Proportional-Integral-Derivative (PID), sliding mode, fuzzy logic control, model predictive, and digital control, are discussed. In addition, different switching modulation schemes, including Pulse-Width Modulation (PWM) control, PWM + Phase Shift control, Single-Phase Shift, Dual-Phase Shift, and Triple-Phase Shift methods, are discussed. The characteristics and control strategies of each are presented, concerning the typical applications. Based on the review analysis, the low-power (Level 1/Level 2) charging applications demand a simple SS compensation topology with a PID controller and a Single-Phase Shift switching method. However, for the medium- or high-power applications (Level 3/Level 4), the dual-side LCC compensation with an advanced controller and a Dual-Side Phase-Shift switching pattern is recommended.Web of Science1520art. no. 781

    Electric Vehicles Charging Stations’ Architectures, Criteria, Power Converters, and Control Strategies in Microgrids

    Get PDF
    Electric Vehicles (EV) usage is increasing over the last few years due to a rise in fossil fuel prices and the rate of increasing carbon dioxide (CO2) emissions. The EV charging stations are powered by the existing utility power grid systems, increasing the stress on the utility grid and the load demand at the distribution side. The DC grid-based EV charging is more efficient than the AC distribution because of its higher reliability, power conversion efficiency, simple interfacing with renewable energy sources (RESs), and integration of energy storage units (ESU). The RES-generated power storage in local ESU is an alternative solution for managing the utility grid demand. In addition, to maintain the EV charging demand at the microgrid levels, energy management and control strategies must carefully power the EV battery charging unit. Also, charging stations require dedicated converter topologies, control strategies and need to follow the levels and standards. Based on the EV, ESU, and RES accessibility, the different types of microgrids architecture and control strategies are used to ensure the optimum operation at the EV charging point. Based on the above said merits, this review paper presents the different RES-connected architecture and control strategies used in EV charging stations. This study highlights the importance of different charging station architectures with the current power converter topologies proposed in the literature. In addition, the comparison of the microgrid-based charging station architecture with its energy management, control strategies, and charging converter controls are also presented. The different levels and types of the charging station used for EV charging, in addition to controls and connectors used in the charging station, are discussed. The experiment-based energy management strategy is developed for controlling the power flow among the available sources and charging terminals for the effective utilization of generated renewable power. The main motive of the EMS and its control is to maximize usage of RES consumption. This review also provides the challenges and opportunities for EV charging, considering selecting charging stations in the conclusion.publishedVersio

    Thermal management of solar photovoltaic panels using a fibre Bragg grating sensor-based temperature monitoring

    Get PDF
    Solar photovoltaic (PV) performance is affected by increased panel temperature. Maintaining an optimal PV panel temperature is essential for sustaining performance and maximizing the pro ductive life of solar PV panels. Current temperature sensors possess a long response time and low resolution and accuracy. Advanced fibre-optic sensors offer distinct advantages of greater accu racy, a more comprehensive range, and a very high sampling rate. The present experimental work focuses on fibre Bragg grating sensor-based solar PV panel temperature monitoring. The unique capabilities of fibre-optic sensors are demonstrated by studying the rapid perturbations in panel temperature over time for indoor and outdoor conditions. The effects of incident radiation flux and the inclination angle on panel temperature are analyzed. Temperature sensitivity of 6 pm/â—¦C is obtained. The results are helpful in dynamic monitoring of panel temperature, understanding the thermal interactions at the microscale level, and streamlining the measured temperature of multiple panels on solar farms. Thus, the proposed advanced method of FBG-based temperature monitoring of solar panels could be helpful to operate an integrated cooling system to improve the performance of solar panels
    corecore